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Abstrac t  

Macromolecules (such as polymethelyene and DNA) are large and flexible, and 
can present themselves in 3-space in topologically interesting ways. The branch of 
topology known as knot theory is the mathematical study of flexible graphs in 
3-space. Knot theory can be used to quantify and compare the various configura- 
tions of large molecules, and to study the various spatial isomers of molecules 
which have complicated molecular graphs. 

1. I n t r o d u c t i o n  

Topology is a branch of  mathematics which studies those properties of  objects 
which do not change when the object is elastically deformed. Topology allows stretch- 
ing, shrinking, twisting - any kind of  continuous deformation short of  breaking and 
reassembling the object. For example, to a topologist, a coffee cup and a doughnut  are 
one and the same - each can be deformed into the other - never mind the difference 
in taste! The basic idea in topology is to relax the rigid Euclidean notion of  equivalence 
(congruence) and replace it with the more flexible notions of  equivalence (homeo- 
morphism, diffeomorphism, etc.). One can think of topology as a mathematical 
a t tempt to quantify "shape".  A flexible molecule does not usually maintain a fixed 
three-dimensional configuration. Such a molecule can assume a variety of  configura- 
tions, driven from one to the other by thermal motion,  solvent effects, experimental 
manipulation,  etc. From an initial configuration for a molecule, topology can help 
identify all of  the possible attainable configurations of  that molecule. For molecules 
which possess complicated molecular graphs, topology can also aid in the prediction 
and detection of  various types of  spatial isomers. As evidence for the utility of  topology 

in chemistry and molecular biology, see the excellent survey articles by Walba [1], 
and Wasserman and Cozzarelli [2]. 
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2. What  is k n o t  t h e o r y ?  

Knot theory is the branch of topology which studies the properties of flexible 
graphs in 3-space. Although at present there are few introductions to knot theory 
written for non-mathematicians (see Neuwirth [3]), there are a number of excellent 
mathematical expositions (Crowell and Fox [4], Fox [5], Rolfsen [6], Burde and 
Zieschang [7]). For a given flexible graph, the phenomenon of knotting is defined to 
be the existence of threedimensional configurations of  that graph which are not super- 
imposable through elastic deformation of space. That is, the given graph must admit 
two configurations, such that to change from one configuration to the other, one must 
either break and then reassemble the graph, or allow an elastic spatial deformation to 
pass edges of the graph through each other. Knots are relatively difficult to detect - 
one has to develop a fair amount of algebraic and geometric machinery in order to 
prove that there is no deformation whatsoever which will make a given configuration 
coincide with another. What follows is a short and simple description of knot theory, 
which attempts to convey the flavor and intuition of the subject, while suppressing the 
details. Throughout this discussion, we disallow chemically irrelevant, extreme topo- 
logical pathology such as tying an infinite sequence of smaller and smaller knots 
converging to a point, and pulling a knot infinitely tight so as to make it disappear. 

Knot theory is the study and quantization of configurations of graphs (1- 
complexes) in Euclidean 3-space (R 3). We first think of graphs as abstract objects. 
As an abstract object, a graph consists of  a finite number of vertices (points) and 
edges (line segments). Two graphs {G, H} are isomorphic if there is a function 

f : G ~ H  

such that f is a homeomorphism ( f  is 1-1, onto, and both f and f -1  are continuous) 
which takes vertices to vertices and edges to edges. Figure 1 shows the molecular 
graphs of three familiar compounds - ethane (a), n-butane (b), and isobutane (c). No 
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Fig. 1. 

pair of  these graphs is isomorphic, but the graphs of ethane and n-butane are homeo- 
morphic. The homeomorphism, however, forgets the chemically important informa- 
tion that the interior vertices of n-butane code the positions of carbon atoms, and 
regards them as just points in a (bent) line segment connecting the endpoints. 
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An embedding o f  the graph G is a particular configuration (or placement) of  
G in R a ; that is, an embedding is a 1-1 continuous function 

g : G  ~ R a . 

The function g is a homeomorphism (not necessarily an isomorphism) between the 
abstract graph G and the subset g(G) of R a . We note that the edges of g(G) do not 
have to be straight. It may also happen that g(G) has fewer vertices and edges than 
does G. One of  the reasons for allowing this is that we may wish to think of a chain 
of  edges of the graph as a single edge, as in figs. l(a) and l(b). By doing this, we 
purposefully forget some of the fine structure, all the while retaining the essential 
topological elements of configuration and symmetry which we wish to study. It is 
possible to fine-tune the theory in order to distinguish and remember certain vertices 
and edges, and our topological methods are adaptable to such restricted settings. 

a b 
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Fig. 2. 

Figure 2 depicts four embeddings of the circle. Figure 2(a) is the standard unit 
circle in the plane, called the "unknot".  Among all of  the many configurations of  the 
circle in R 3 , fig. 2(a) is the simplest, the one of minimum complexity. Figure 2(b) is 
also called the unknot, because the configuration it depicts can be deformed to that of  
fig. 2(a). Figure 2(c) is the "+"  (or right-hand) trefoil knot, and fig. 2(d) is the " - "  
(or left-hand) trefoil knot. Neither 2(c) nor 2(d) can be deformed to 2(a), nor can they 
be deformed into each other. What is depicted in fig. 2 are representations of three- 
dimensional configurations. These pictures are projections of the embedded circles 
onto planes, with breaks in the lower segment at the crosssover points of  the projection. 
Think for the moment of an embedded circle as a rind, immovable object in R 3 , and 
a projection as a photograph of this object. Depending on where the photographer 
stands, each configuration clearly admits many different projections. If, in addition, 
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we allow the configuration to be deformed, we obtain many more projections of the 
"same" object, as in figs. 2(a) and 2(b). 

We say that the embeddings {gl(G) ,  g2(G)} are equivalent if there is a 
1 -parameter family of  homeomorphisms 

F t :R 3 ~ R 3 0 <~ t <~ 1 

such that F o = identity and F 1 (gl (G)) = g2 (G). One thinks of the parameter t as time, 
and the family of homeomorphisms as an elastic motion of 3-space which starts at 
time t = 0, and at time t = 1, the configuration gl(G) has been moved so that it 
coincides with (is superimposed on) the configuration g2(G). With this mathematical 
notion of equivalence, it is possible to show that the configurations of figs. 2(a), 2(c), 
and 2(d) represent three inequivalent embeddings of the circle. An equivalence class 
of embeddings is called a knot  type (or just "knot" )  of the graph, and a particular 
embedding is a representative of its equivalence class. Some abstract graphs do not 
exhibit knotting - every pair of  embeddings is equivalent. Figure 3 shows two equi- 
valent embeddings of a line segment. The apparently "knotted" line segment of 

a 

Fig. 3. 

b 

fig. 3(b) is in fact equivalent to the straight line segment of fig. 3(a) - all entangle- 
ments can be eliminated because one has two free ends to work with. Similarly, one 
can show that any two embeddings of the same tree graph are equivalent - trees do 
not knot! A graph must contain a cycle in order to admit inequivalent embeddings. 
The simplest graph which contains a cycle is the circle. A majority of the work in 
knot theory has been concentrated on the case of G -- a family of circles. An embedding 
of one circle is usually called a knot  in mathematics, and an embedding of two or more 
circles is called a link in mathematics, and a catenane in chemistry. The reason mathe- 
maticians have concentrated on circles is that this case is the simplest one, and it is 
not yet completely understood! Recent interest in chemical applications of knot 
theory Walba [1] ) has encouraged mathematicians to renew the attack on the general 
case (Simon [8], Jonish and Millett [9], Kauffman [10] ). 

Figure 2 shows three "knots" of the circle: the unknot, to which all other 
embeddings are compared, and two nontrivial embeddings, the "+"  and " - "  trefoil 
(three leaf) knots. The " + "  and " - "  trefoils bear a special relationship to each other 
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- -  figs. 2(c) and 2(d) are mirror images of each other. Reflecting space in a mirror 
switches right-handed ( " +  ") and left-handed ( " - " )  objects. It can be shown that 
the homeomorphism on R 3 obtained by reflection in a plane (the mirror) can not be 
the result of  a motion of 3-space (in the sense of the above definition of equivalence). 
Any embedding of a graph which is inequivalent to its mirror image is said to represent 
a chiral knot. Figures 2(c) and 2(d) exhibit a pair of  chiral knots of the circle. 

In the case of the circle, it was clear which embedding was to be distinguished 
as the benchmark embedding - the "unknot" is chosen to be the knot type of the 
unit circle in the plane. For an arbitrary graph, it is a nontrivial question as to which 
(if any!) equivalence class of embeddings should be called the "unknot".  Presumably, 
this class of embeddings will contain an embedding of "minimal" complexity in the 
world of all embeddings of a given graph, an embedding by which all other embeddings 
will be measured. An abstract graph is called planar if it can be embedded in the plane. 
For any planar graph (such as the circle), the question of distinguishing an unknot is 
easy - any one of the planar embeddings will do, since all planar embeddings are 
equivalent (Mason [11]). Therefore, for a planar graph, an embedding represents a 
nontrivial knot if and only if the embedding is not deformable into a plane. Some 
abstract graphs, however, admit no planar embeddings at all. For graphs such as this, 
distinguishing an unknot involves choosing a specific non-planar embedding. Perhaps 
one should select that embedding which is most nearly planar - one which admits a 
projection which minimizes the number of crossovers. The problem here is that such 
an embedding is almost certainly not unique - different knot types will be "minimal" 
In fact, it is known that if a graph is complex enough, every embedding will exhibit 
pathology! For example, let K n denote the abstract complete graph on n vertices; this 
graph has n vertices and an edge connecting every pair of vertices. Conway-Gordon  
[12] show that every embedding of any graph that contains K 6 will have at least one 
pair of  disjoint linked cycles, and every embedding of any graph that contains K 7 will 
have at least one knotted cycle! This means that "unknotted" embeddings o f K  6 and 
K 7 will be difficult to come by. Figure 4 shows possible candidates for "unknotted" 
embeddings of K 6 and KT, with the pathological parts highlighted. 

K6 F ig .  4 .  K7 
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It may reasonably be asked, "How does one decide if two embeddings of a 
given graph are inequivalent?" The mathematical answer follows. A knot  invariant 
is some mathematical object (a number, a group, a polynomial, a topological space, 
etc.) which can be unambiguously assigned to a knot type. Although it may be that 
knots of differing type have an invariant in common (in which case that particular 
invariant fails to distinguish them), we nevertheless can correctly conclude that knots 
which have different invariants are in fact different knot types. 

The most common knot invariants are derived from the knot complement 
X = (R 3 - g(G)). If two knots are of the same type, then the homeomorphism which 
superimposes one representative embedding onto the other also takes the complement 
of  one embedding homeomorphically to the complement of the other. So, the knot 
complement itself is a knot invariant. A popular invariant derived from the knot 
complement is the fundamental group rr 1 (X). The elements of this group are loops 
in X which can not be shrunk to a point. If two knots are of the same type, then the 
fundamental groups of their complements are isomorphic. Although a prototypical 
invariant and computable from any knot projection, the problem with the fundamental 
group is that it is infinite and (in general) non-Abelian. It can be a very difficult 
question to decide whether or not two such groups are isomorphic. See Thisthlethwaite 
[13] for an interesting survey of this problem for circle knots. 

A new family of polynomial invariants has recently arisen (Brandt et al. [14], 
Freyd et al. [15]) inspired by the Jones Polynomial [16]. These invariants are defined 
for embeddings of  a family of  circles (knots and links). These polynomial invariants 
are combinatorial in nature, and are computed inductively for knot and link projections 
by relating a given projection to simpler projections via changing and removing cross- 
overs in certain specified ways. On the face of it, the polynomials appear to be pro- 
jection-dependent, but in fact are topological invariants. For example, if a denotes 
a knot or link type, let P~(x, y, z) denote the polynomial invariant defined in [15]. 
If c~ denotes the "+" trefoil of  fig. 2(c), and ~ denotes the " - "  trefoil of  fig. 2(d), we 
have the following result [15] : 

P ( x , y , z )  = x - 2 z  2 - 2 x - l y  - x - 2 y  2 

P t3(x ,y , z )  = y -2  z2 _ 2xy-a  - x 2 y - : .  

Versions of the above polynomial invariant have been developed for embeddings of 
graphs other than families of  circles (Jonish and Millett [9], Kauffman [10] ). 

Another question of  interest in both knot theory and chemistry is chirality. 
Let g(G) represent the knot type K. Take the standard ( X Y Z )  coordinate system for 
R 3 . Suppose that g(G) lies above the z = 0 hyperplane. Reflect g(G) in the plane 
z = 0 to obtain the mirror image embedding g' (G), which represents the knot type K*. 
In terms of knot projections, one obtains a projection of  the mirror image by changing 
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"+" crosslng " - "  crosslng 

Fig. 5. 

the sense of  every crossover - over becomes under and vice versa, as in figs. 2(c) and 
2(d). We say that the knot K is chiral if K =~ K" .  Detecting this chirality is not easy. 
For example, the calculation of  the polynomial invariants for the " + "  and " - "  
trefoils in the above paragraph proves that these form a chiral pair. Chemists have 
utilized the "skew lines convention" [ 1 ] for chirality purposes: for a pair of  oriented 
skew lines in space, fig. 5 shows a " + "  or right-hand crossing, and a "-"  or left-hand 
crossing. In order to apply the skew lines convention for a circle knot K,  first assign 
an orientation (put an arrow on it), and then select a minimum (minimum number of  
crossovers) projection for K, and then add up the signed crossovers in that projection. 
One hopes that if a minimum projection has an excess of " + "  or " - "  crossings 
(C(K) 4= 0), then this will be an indication of  chirality for that circle knot. Unfortu- 
nately, this may not always be the case. The computation of  C(K) for a circle knot 
involves two choices - choice of  orientation and choice of minimum projection. The 
first choice is no problem, because switching the orientation on the circle switches 
the arrows on both lines at a crossover, so the sign of  the crossing is unchanged. The 
choice of  minimum projection is another matter. In the world of  circle knots, one is 
forced to take a minimum projection because if a projection has extraneous (re- 
movable) crossings, such as those in fig. 6, these crossings can be of  either sign, and 

Fig. 6. 

C(K) will have no chance of  being a knot invariant. Sadly, it turns out that restricting 
the calculation to minimum projections is not enough to guarantee invariance. For 
example, fig. 7 shows the infamous "Perko" pair, a pair of  minimum (10-crossing) 
projections of  the same knot. The signed crossover numbers for these projections are 
+ 8 and + 10, respectively! In terms of  invariance, the situation for pairs of  oriented 
circles is much better. In this case, take any projection and let C(K) denote the sum 
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K l = K 2 

C(K I )  : +8 

Fig. 7. 
C{K 2) : +10 

of the signed crossovers between circular components (forget the self-crossings of each 
component). We define the linking number of the two circles as C(K)/2 (see sect. 4). 
The linking number is a knot invariant for pairs of  oriented circles. 

Recently, Kauffman [17] has shown the signed crossover number to be a 
chirality detector. A circle knot is composite (or factorable) if it can be obtained 
by tying first one knot in a string, then further along the string, another knot, and 
then closing the ends up to produce a circle. Figure 8 shows the "granny" knot, a 

Fig. 8. 

composite of the " - "  trefoil with itself. A knot which can not be factored into 
other knots is called prime. A projection of  a circle knot is alternating if, when traversed, 
one encounters the crossings alternately above and below. For example, the granny 
knot of fig. 8 is alternating. A circle knot projection is reduced if no crossings of the 
form shown in fig. 6 are present. In fig. 6, the hatched circle denotes a region of the 
diagram into which a single string enters and later leaves. If a circle knot admits an 
alternating projection, then it admits a reduced alternating projection, by removing 
crossovers such as those in fig. 6 until no more removals of  this type are possible. 

THEOREM [17] 

Suppose that K is a prime circle knot, and that K admits a reduced alternating 
projection with N crossings. Let C(K) be the signed crossover number of this projection. 
If I C(K) I >i N/3/> 1, then K is chiral. 
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The above theorem by Kauffman detects that the trefoil is chiral. Kauffman's 
theorem also applies to prime alternating links. 

3. W h y  is k n o t  t h e o r y  usefu l?  

Macromolecules are molecules of large molecular weight, such as synthetic 
polymers (e.g. polymethylene), and biopolymers (e.g. DNA). We can model all mole- 
cules (macromolecules included) as molecular graphs in R 3 - the vertices correspond 
to atoms and the edges correspond to covalent bonds. While one can think of small 
bits (the monomers) of  these molecules as being rigid, when one concatenates long 
strings of  these bits, the resulting molecules are very flexible indeed. Some molecules 
exist in closed circular form, both in synthetic chemistry (Schill [18], Roovers [19], 
Walba [20] ), and in biochemistry (Sumners [21] ), Wasserman and Cozzarelli [2] ). If 
a molecule has a molecular graph which contains a cycle, then knot  theory can be used 
to model it. It is clear that the definition of topological equivalence of molecular 
graphs involving highly elastic spatial motion is physically unrealistic. If an edge 
denotes a covalent bond, it can not be stretched or shrunk or bent at will! Atoms 
(vertices) can not be considered to be just another point in an edge. Since bond angles 
must be preserved, molecules are not infinitely flexible. Nevertheless, the topological 
point of view is, on the one hand, broad and robust enough to generate a useful body 
of mathematical knowledge and, on the other hand, precise enough to place useful 
and computable limits on the physically possible motions and configurations of 
molecules. As evidence, we will consider three applications of knot theory. These are 
just a few of a number of recent applications of knot theory in chemistry and mole- 
cular biology. 

4.  Ch i ra l i ty  o f  s y n t h e t i c  m o l e c u l e s  

In his effort to synthesize a hydrophilic molecule, Walba utilized a cyclization 
reaction on a molecular ladder, with double bonds forming the rungs [1,20].  The 
results of his synthesis are schematically depicted in fig. 9. Figure 9(a) shows a 

a b c 

Fig. 9. 

cyclindrical molecule, and 9(b) and 9(c) show molecular M6bius bands, each the 
mirror image of the other. The cylindrical molecule formed a solid, and an apparent 
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racemic mixture of fight-handed (b) and left-handed (c) M6bius molecules formed 
an oil. In order to bolster the chemical evidence of the existence of the two M6bius 
enanfiomers, a mathematical proof was needed to demonstrate that the right-handed 
and left-handed versions of this molecule were different - that these two configura- 
tions were not interconvertible. Simon [8] was able to answer this chirality question 
by using linking numbers. Linking numbers are computed using the skew lines con- 
vention, as explained in sect. 2. Figure 10 shows a projection of two oriented linking 

(-. 
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Fig. 10. 

circles in R 3 . In fig. 10(a), the linking number is + 2; in fig. 10(b) [the mirror image 
of 10(a)], the linking number is -2 .  If one pair of oriented circles is equivalent to 
another pair of  oriented circles, then their linking numbers are equal. 

Simon's idea was to use the molecular configurations in figs. 9(b) and 9(c) to 
construct invariant derived topological spaces, called the twofold branched cyclic 
coverings. Certain equivalent pieces of  each diagram lifted to pairs of  circles in these 
covering spaces - but their linking numbers were different, so the two molecular 
graphs represent different knot types. This means that the two M6bius molecules 
represent different compounds, because they are topologically constrained from being 
superimposable. 

5. S y n t h e t i c  p o l y m e r  c o n f i g u r a t i o n  

Some synthetic polymers (e.g. polymethylene) are very long linear chains of 
monomers, and have molecular graphs which are homeomorphic to a line segment. In 
a polymer melt, each molecule is topologically unconstrained (unknotted), so, given 
enough time and energy, each could be moved to a planar position. Given energetic 
and/or time constraints, these molecules may very well exhibit knotting. There is, 
however, a very interesting natural polymer configuration - namely semicrystalline 
polymers - in which topological constraints unavoidably arise. A semicrystalline 
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polymer is a mixture of anisotropic crystalline regions (lamellae) and isotropic 
(amorphous) regions. Intuitively speaking, the polymer has crystallized as much as 
it can, and is prevented from becoming totally crystalline by various entanglements 
of  the long strands of the polymer. One can model the spatial configuration of a 
macromolecule as a random walk in R 3, where the vertices represent the positions 
of carbon atoms, and adjacent vertices are connected by straight line segments repre- 
senting covalent bonds. In studying the statistical mechanics of such configurations, 
one often groups a few (not necessarily an integral number) monomers together, and 
represents the group as a straight line segment in the random walk model. The number 
of monomers grouped together is called the statistical step size. For example, for 
polymethelyene, the statistical step size is about 3.5 monomers, and for closed circular 
double stranded DNA, about 500 base pairs. For a semicrystalline polymer, one 
models the amorphous region as a collection of random walks on a cubical lattice 

J 
loop 

¢/ 
/ ,  

Fig. 11. 

between two parallel absorbing walls (the sides of adjacent lamellae). The lattice unit 
is the statistical step size for the polymer under consideration. In this model, a polymer 
strand exits a crystalline wall and performs a random walk in the amorphous region 
until it either returns to the wall from which it exited (it is then a loop), or hits the 
opposite wall (it is then a t/e). Figure 11 shows ties and loops. Lacher et al. [22] 
show through computer simulation that a strong form of topological entanglement 
(linking) occurs between loops based on opposite faces. It was found that the per- 
centage of  loops based on one face of a lamella which link at least one loop based on 
the opposite face remains constant as the thickness of the amorphous region is in- 
creased, and exceeds the percentage of ties for thicknesses greater than 20 units. 
Other linking invariants appear to increase with interlamellar distance. Thus, it may 
not be the case that the ultimate strength of a semicrystalline polymer depends on the 
percentage of ties, which decreases with interlamellar distance. On the contrary, it 
may be the topological entanglement (linking) of loops that is making a major contri- 
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bution to the physical characteristics of the polymer. Much work remains to be done 
in this area, including further computations of the statistics for the families of knots 
and links which occur in this model of the amorphous region, and in the development 
of simplified analytical models (Lacher et al. [23]) which explain the numerical 
results of computer simulation. 

6. T o p o i s o m e r a s e  m e c h a n i s m  

The DNA molecule is a biopolymer which is long and threadlike, and often 
naturally occurs in closed circular form. Knot theory has been brought to bear on the 
study of the geometric action of various naturally occurring enzymes (called topo- 
isomerases) which alter the way in which the DNA is embedded in R 3 (Wang [24], 
Wasserman and Cozzarelli [2]). In the cell, topoisomerases are believed to facilitate 
the central genetic events of replication, transcription and recombination via geometric 
manipulation of the DNA. This manipulation includes promoting the writhing (coiling 
up) of the molecule, passing one strand of the molecule through another via a transient 
enzyme-bridged break in the molecule, and breaking strands and rejoining to different 
ends (a move performed by recombinant enzymes). The strategy is to use knot theory 
to deduce enzymatic mechanism and substrate structure from changes in DNA topo- 
logy effected by an enzyme reaction. Although these enzymes react with linear as well 
as circular DNA, experiments are done using circular DNA. This is because the changes 
in topology (the creation of knots) due to enzymatic action can be captured in circular 
DNA, but would be lost in linear DNA during work-up of the reaction products for 
analysis by gel electrophoresis and electron microscopy. 

~ writhing 

--> 

Fig. 12. 

Figure 12 shows a hypothetical topoisomerase reaction in which an enzyme 
converts an unknotted circle to a " + "  trefoil knot via mediating writhing, followed 
by strand passage. The experimental technique in these DNA experiments is to react 
unknotted circular DNA with an enzyme, and then to separate the reaction products 
via agarose gel electrophoresis. The surprising experimental result here is that the 
reaction products are circle knots and links, and that their gel electrophoretic mobility 
is determined by their crossover number - the minimum number of crossovers neces- 
sary in order to achieve a planar projection of the object (Dean et al. [25]). So the 
result of gel electrophoresis is a ladder of gel bands whose rungs correspond to knots 
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and links of the same crossover number! The DNA is then removed from the gel, and 
to greatly enhance resolution for electron microscopy, the molecules are coated with 
recA protein (Krasnow et al. [26] ). This coating thickens the strands from about 10 A 
to 100 A, simultaneously affording unambiguous determination of the crossovers, and 
fewer extraneous crossovers. Figure 13 shows some DNA knots and links. Figure 13(a) 

a b ¢ 

Fig. 13. 

is a " +"  trefoil knot,  fig. 13(b) is a " - "  trefoil knot,  and fig. 13(c) is the " + "  fig. 8 
catenane (the crossover in the middle is a "+"  crossover). When one is looking at 
experimental output  such as that shown in fig. 13, the necessity for using knot  theory 
becomes absolutely clear! Moreover, the resolution exhibited in these micrographs 
allows the precise determination of knot type for the reaction products. 

Various enzymes can be characterized by the family of circle knots and 
catenanes which they produce when reacted with unknotted circular substrate. For 
example, the enzyme TOPO I (Dean et al. [25]) produces all possible circle knots 
(of low crossover number),  and produces chiral knots racemically. The recombinant 
enzyme Phage X, on the other hand, produces only "+"  toms knots and toms 
catenanes of type (2, k) - all are chiral and of a very special type (Spengler et al. 
[27],  Sumners et al. [28]). 

One interesting problem here is to partition the enzyme mechanism between 
changes in the geometry (writhing) and changes in the topology (strand passage and 
strand exchange - both of which involve breaking strands) of the substrate. By changes 
in geometry, we mean enzyme manipulations of the substrate which do not change 
the knot type; by changes in topology, we mean enzyme manipulations which do 
change the knot  type. Because work-up and analysis of reaction products necessarily 
introduces changes in geometry, it is difficult to detect changes due to enzyme action. 
However, enzymatic changes in the geometry can be trapped (as in tig. 12) by subse- 
quent changes in the topology. Results of computer simulation of knot  production 
via random crossover changes (Michels and Wiegel [29]) can be used to show that 
TOPO I produces changes in geometry as well as changes in topology (Dean et al. 
[25]). More work is needed here, both in terms of computer simulation of random 
knotting and linking, and in using "analytical" knot  theory to deduce mechanism 
(Sumners et al. [28]). 
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